Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.323
Filtrar
1.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607024

RESUMO

Recombination among different phages sometimes facilitates their ability to grow on new hosts. Protocols to direct the evolution of phage host range, as might be used in the application of phage therapy, would then benefit from including steps to enable recombination. Applying mathematical and computational models, in addition to experiments using phages T3 and T7, we consider ways that a protocol may influence recombination levels. We first address coinfection, which is the first step to enabling recombination. The multiplicity of infection (MOI, the ratio of phage to cell concentration) is insufficient for predicting (co)infection levels. The force of infection (the rate at which cells are infected) is also critical but is more challenging to measure. Using both a high force of infection and high MOI (>1) for the different phages ensures high levels of coinfection. We also apply a four-genetic-locus model to study protocol effects on recombinant levels. Recombinants accumulate over multiple generations of phage growth, less so if one phage outgrows the other. Supplementing the phage pool with the low-fitness phage recovers some of this 'lost' recombination. Overall, fine tuning of phage recombination rates will not be practical with wild phages, but qualitative enhancement can be attained with some basic procedures.


Assuntos
Bacteriófagos , Coinfecção , Humanos , Bacteriófagos/genética , Recombinação Genética/genética
2.
Proc Natl Acad Sci U S A ; 121(15): e2319506121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557186

RESUMO

Genomes are typically mosaics of regions with different evolutionary histories. When speciation events are closely spaced in time, recombination makes the regions sharing the same history small, and the evolutionary history changes rapidly as we move along the genome. When examining rapid radiations such as the early diversification of Neoaves 66 Mya, typically no consistent history is observed across segments exceeding kilobases of the genome. Here, we report an exception. We found that a 21-Mb region in avian genomes, mapped to chicken chromosome 4, shows an extremely strong and discordance-free signal for a history different from that of the inferred species tree. Such a strong discordance-free signal, indicative of suppressed recombination across many millions of base pairs, is not observed elsewhere in the genome for any deep avian relationships. Although long regions with suppressed recombination have been documented in recently diverged species, our results pertain to relationships dating circa 65 Mya. We provide evidence that this strong signal may be due to an ancient rearrangement that blocked recombination and remained polymorphic for several million years prior to fixation. We show that the presence of this region has misled previous phylogenomic efforts with lower taxon sampling, showing the interplay between taxon and locus sampling. We predict that similar ancient rearrangements may confound phylogenetic analyses in other clades, pointing to a need for new analytical models that incorporate the possibility of such events.


Assuntos
Evolução Biológica , Genoma , Animais , Filogenia , Genoma/genética , Aves , Recombinação Genética
3.
Microbiome ; 12(1): 72, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600530

RESUMO

BACKGROUND: Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS: Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS: The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.


Assuntos
Quirópteros , Vírus , Animais , Animais Selvagens , Genoma Viral/genética , Filogenia , Recombinação Genética , Roedores , Uganda/epidemiologia
4.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580643

RESUMO

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Camundongos , Animais , Proteínas de Ciclo Celular/metabolismo , DNA , Meiose/genética , Complexo Sinaptonêmico/metabolismo , Recombinação Genética , Recombinação Homóloga
5.
Nat Commun ; 15(1): 3313, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632281

RESUMO

Recombination is a key molecular mechanism for the evolution and adaptation of viruses. The first recombinant SARS-CoV-2 genomes were recognized in 2021; as of today, more than ninety SARS-CoV-2 lineages are designated as recombinant. In the wake of the COVID-19 pandemic, several methods for detecting recombination in SARS-CoV-2 have been proposed; however, none could faithfully confirm manual analyses by experts in the field. We hereby present RecombinHunt, an original data-driven method for the identification of recombinant genomes, capable of recognizing recombinant SARS-CoV-2 genomes (or lineages) with one or two breakpoints with high accuracy and within reduced turn-around times. ReconbinHunt shows high specificity and sensitivity, compares favorably with other state-of-the-art methods, and faithfully confirms manual analyses by experts. RecombinHunt identifies recombinant viral genomes from the recent monkeypox epidemic in high concordance with manually curated analyses by experts, suggesting that our approach is robust and can be applied to any epidemic/pandemic virus.


Assuntos
COVID-19 , Pandemias , Humanos , SARS-CoV-2 , Genoma Viral , Recombinação Genética , Filogenia
6.
Virol J ; 21(1): 84, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600521

RESUMO

BACKGROUND: PlMERS-CoV is a coronavirus known to cause severe disease in humans, taxonomically classified under the subgenus Merbecovirus. Recent findings showed that the close relatives of MERS-CoV infecting vespertillionid bats (family Vespertillionidae), named NeoCoV and PDF-2180, use their hosts' ACE2 as their entry receptor, unlike the DPP4 receptor usage of MERS-CoV. Previous research suggests that this difference in receptor usage between these related viruses is a result of recombination. However, the precise location of the recombination breakpoints and the details of the recombination event leading to the change of receptor usage remain unclear. METHODS: We used maximum likelihood-based phylogenetics and genetic similarity comparisons to characterise the evolutionary history of all complete Merbecovirus genome sequences. Recombination events were detected by multiple computational methods implemented in the recombination detection program. To verify the influence of recombination, we inferred the phylogenetic relation of the merbecovirus genomes excluding recombinant segments and that of the viruses' receptor binding domains and examined the level of congruency between the phylogenies. Finally, the geographic distribution of the genomes was inspected to identify the possible location where the recombination event occurred. RESULTS: Similarity plot analysis and the recombination-partitioned phylogenetic inference showed that MERS-CoV is highly similar to NeoCoV (and PDF-2180) across its whole genome except for the spike-encoding region. This is confirmed to be due to recombination by confidently detecting a recombination event between the proximal ancestor of MERS-CoV and a currently unsampled merbecovirus clade. Notably, the upstream recombination breakpoint was detected in the N-terminal domain and the downstream breakpoint at the S2 subunit of spike, indicating that the acquired recombined fragment includes the receptor-binding domain. A tanglegram comparison further confirmed that the receptor binding domain-encoding region of MERS-CoV was acquired via recombination. Geographic mapping analysis on sampling sites suggests the possibility that the recombination event occurred in Africa. CONCLUSION: Together, our results suggest that recombination can lead to receptor switching of merbecoviruses during circulation in bats. These results are useful for future epidemiological assessments and surveillance to understand the spillover risk of bat coronaviruses to the human population.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Filogenia , Funções Verossimilhança , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/epidemiologia , Recombinação Genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Sci Adv ; 10(14): eadn3329, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578999

RESUMO

Characterizing the relative onset time, strength, and duration of molecular signals is critical for understanding the operation of signal transduction and genetic regulatory networks. However, detecting multiple such molecules as they are produced and then quickly consumed is challenging. A MER can encode information about transient molecular events as stable DNA sequences and are amenable to downstream sequencing or other analysis. Here, we report the development of a de novo molecular event recorder that processes information using a strand displacement reaction network and encodes the information using the primer exchange reaction, which can be decoded and quantified by DNA sequencing. The event recorder was able to classify the order at which different molecular signals appeared in time with 88% accuracy, the concentrations with 100% accuracy, and the duration with 75% accuracy. This simultaneous and highly programmable multiparameter recording could enable the large-scale deciphering of molecular events such as within dynamic reaction environments, living cells, or tissues.


Assuntos
Redes Reguladoras de Genes , Recombinação Genética , DNA/genética
8.
Emerg Microbes Infect ; 13(1): 2332653, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517703

RESUMO

Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.


Assuntos
Alphacoronavirus , Coinfecção , Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Humanos , Suínos , Animais , Coinfecção/veterinária , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Gastroenterite Transmissível/genética , Recombinação Genética
9.
Plant Mol Biol ; 114(2): 25, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457042

RESUMO

Knowing how chromosome recombination works is essential for plant breeding. It enables the design of crosses between different varieties to combine desirable traits and create new ones. This is because the meiotic crossovers between homologous chromatids are not purely random, and various strategies have been developed to describe and predict such exchange events. Recent studies have used methylation data to predict chromosomal recombination in rice using machine learning models. This approach proved successful due to the presence of a positive correlation between the CHH context cytosine methylation and recombination rates in rice chromosomes. This paper assesses the question if methylation can be used to predict recombination in four plant species: Arabidopsis, maize, sorghum, and tomato. The results indicate a positive association between CHH context methylation and recombination rates in certain plant species, with varying degrees of strength in their relationships. The CG and CHG methylation contexts show negative correlation with recombination. Methylation data was key effectively in predicting recombination in sorghum and tomato, with a mean determination coefficient of 0.65 ± 0.11 and 0.76 ± 0.05, respectively. In addition, the mean correlation values between predicted and experimental recombination rates were 0.83 ± 0.06 for sorghum and 0.90 ± 0.05 for tomato, confirming the significance of methylomes in both monocotyledonous and dicotyledonous species. The predictions for Arabidopsis and maize were not as accurate, likely due to the comparatively weaker relationships between methylation contexts and recombination, in contrast to sorghum and tomato, where stronger associations were observed. To enhance the accuracy of predictions, further evaluations using data sets closely related to each other might prove beneficial. In general, this methylome-based method holds great potential as a reliable strategy for predicting recombination rates in various plant species, offering valuable insights to breeders in their quest to develop novel and improved varieties.


Assuntos
Arabidopsis , Arabidopsis/genética , Epigenoma , Melhoramento Vegetal , Metilação de DNA , Plantas/genética , Recombinação Genética/genética , Regulação da Expressão Gênica de Plantas
10.
PLoS Genet ; 20(3): e1011185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489251

RESUMO

The segregation of homologous chromosomes during meiosis typically requires tight end-to-end chromosome pairing. However, in Drosophila spermatogenesis, male flies segregate their chromosomes without classic synaptonemal complex formation and without recombination, instead compartmentalizing homologs into subnuclear domains known as chromosome territories (CTs). How homologs find each other in the nucleus and are separated into CTs has been one of the biggest riddles in chromosome biology. Here, we discuss our current understanding of pairing and CT formation in flies and review recent data on how homologs are linked and partitioned during meiosis in male flies.


Assuntos
Recombinação Genética , Complexo Sinaptonêmico , Animais , Masculino , Complexo Sinaptonêmico/genética , Meiose/genética , Pareamento Cromossômico/genética , Drosophila/genética , Segregação de Cromossomos/genética
11.
J Bacteriol ; 206(4): e0033023, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38470036

RESUMO

Tetrameric single-stranded (ss) DNA-binding proteins (SSBs) stabilize ssDNA intermediates formed during genome maintenance reactions in Bacteria. SSBs also recruit proteins important for these processes through direct SSB-protein interactions, including proteins involved in DNA replication restart and recombination processes. SSBs are composed of an N-terminal oligomerization and ssDNA-binding domain, a C-terminal acidic tip that mediates SSB-protein interactions, and an internal intrinsically disordered linker (IDL). Deletions and insertions into the IDL are well tolerated with few phenotypes, although the largest deletions and insertions exhibit some sensitivity to DNA-damaging agents. To define specific DNA metabolism processes dependent on IDL length, ssb mutants that lack 16, 26, 37, or 47 residues of the 57-residue IDL were tested for synthetic phenotypes with mutations in DNA replication restart or recombination genes. We also tested the impact of integrating a fluorescent domain within the SSB IDL using an ssb::mTur2 insertion mutation. Only the largest deletion tested or the insertion mutation causes sensitivity in any of the pathways. Mutations in two replication restart pathways (PriA-B1 and PriA-C) showed synthetic lethalities or small colony phenotypes with the largest deletion or insertion mutations. Recombination gene mutations del(recBCD) and del(ruvABC) show synthetic phenotypes only when combined with the largest ssb deletion. These results suggest that a minimum IDL length is important in some genome maintenance reactions in Escherichia coli. These include pathways involving PriA-PriB1, PriA-PriC, RecFOR, and RecG. The mTur2 insertion in the IDL may also affect SSB interactions in some processes, particularly the PriA-PriB1 and PriA-PriC replication restart pathways.IMPORTANCEssb is essential in Escherichia coli due to its roles in protecting ssDNA and coordinating genome maintenance events. While the DNA-binding core and acidic tip have well-characterized functions, the purpose of the intrinsically disordered linker (IDL) is poorly understood. In vitro studies have revealed that the IDL is important for cooperative ssDNA binding and phase separation. However, single-stranded (ss) DNA-binding protein (SSB) variants with large deletions and insertions in the IDL support normal cell growth. We find that the PriA-PriB1 and PriA-C replication restart, as well as the RecFOR- and RecG-dependent recombination, pathways are sensitive to IDL length. This suggests that cooperativity, phase separation, or a longer spacer between the core and acidic tip of SSB may be important for specific cellular functions.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Recombinação Genética
12.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G495-G503, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469630

RESUMO

Tissue-specific gene manipulations are widely used in genetically engineered mouse models. A single recombinase system, such as the one using Alb-Cre, has been commonly used for liver-specific genetic manipulations. However, most diseases are complex, involving multiple genetic changes and various cell types. A dual recombinase system is required for conditionally modifying different genes sequentially in the same cell or inducing genetic changes in different cell types within the same organism. A FlpO cDNA was inserted between the last exon and 3'-UTR of the mouse albumin gene in a bacterial artificial chromosome (BAC-Alb-FlpO). The founders were crossed with various reporter mice to examine the efficiency of recombination. Liver cancer tumorigenesis was investigated by crossing the FlpO mice with FSF-KrasG12D mice and p53frt mice (KPF mice). BAC-Alb-FlpO mice exhibited highly efficient recombination capability in both hepatocytes and intrahepatic cholangiocytes. No recombination was observed in the duodenum and pancreatic cells. BAC-Alb-FlpO-mediated liver-specific expression of mutant KrasG12D and conditional deletion of p53 gene caused the development of liver cancer. Remarkably, liver cancer in these KPF mice manifested a distinctive mixed hepatocellular carcinoma and cholangiocarcinoma phenotype. A highly efficient and liver-specific BAC-Alb-FlpO mouse model was developed. In combination with other Cre lines, different genes can be manipulated sequentially in the same cell, or distinct genetic changes can be induced in different cell types of the same organism.NEW & NOTEWORTHY A liver-specific Alb-FlpO mouse line was generated. By coupling it with other existing CreERT or Cre lines, the dual recombinase approach can enable sequential gene modifications within the same cell or across various cell types in an organism for liver research through temporal and spatial gene manipulations.


Assuntos
Neoplasias Hepáticas , Proteínas Proto-Oncogênicas p21(ras) , Camundongos , Animais , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Albuminas/genética , Recombinases/genética , Recombinação Genética , Neoplasias Hepáticas/genética , Integrases/genética
13.
PLoS Genet ; 20(3): e1011223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517929

RESUMO

Cultural exchange of fermentation techniques has driven the spread of Saccharomyces cerevisiae across the globe, establishing natural populations in many countries. Despite this, Oceania is thought to lack native populations of S. cerevisiae, only being introduced after colonisation. Here we investigate the genomic landscape of 411 S. cerevisiae isolated from spontaneous grape fermentations in Australia across multiple locations, years, and grape cultivars. Spontaneous fermentations contained highly recombined mosaic strains that exhibited high levels of genome instability. Assigning genomic windows to putative ancestral origin revealed that few closely related starter lineages have come to dominate the genetic landscape, contributing most of the genetic variation. Fine-scale phylogenetic analysis of loci not observed in strains of commercial wine origin identified widespread admixture with European derived beer yeast along with three independent admixture events from potentially endemic Oceanic lineages that was associated with genome instability. Finally, we investigated Australian ecological niches for basal isolates, identifying phylogenetically distinct S. cerevisiae of non-European, non-domesticated origin associated with admixture loci. Our results illustrate the effect commercial use of microbes may have on local microorganism genetic diversity and demonstrates the presence of non-domesticated, potentially endemic lineages of S. cerevisiae in Australian niches that are actively admixing.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae/genética , Vitis/genética , Filogenia , Austrália , Vinho/análise , Genômica , Instabilidade Genômica/genética , Recombinação Genética , Fermentação
14.
Arch Virol ; 169(4): 76, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494576

RESUMO

The number of individuals infected with HIV-1 among men who have sex with men (MSM) has risen rapidly in recent years in China, and the subtypes CRF01_AE, CRF07_BC, and B, as well as many novel unique recombinant forms (URFs) are prevalent among them. Co-circulation of strains among MSM populations allows the generation of circulating recombinant forms (CRFs) and URFs. In this study, we identified two new URFs from two HIV-1-positive subjects who were infected through homosexual contact in Hebei, China. Analysis of near-full-length genome sequences, using phylogenetic and recombination analysis showed that the two URFs originated from CRF01_AE, CRF07_BC, and B, and CRF01_AE segments in the backbone of the URFs were derived from cluster 4 of CRF01_AE. The CRF07_BC segments of two URFs were clustered with 07BC_N in a phylogenetic tree. The identification of novel URFs with complex genomic structures shows that it is necessary to strengthen surveillance of HIV-1 variants in MSM populations in this region.


Assuntos
Infecções por HIV , HIV-1 , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Filogenia , Infecções por HIV/epidemiologia , Recombinação Genética , Análise de Sequência de DNA , Genoma Viral , China/epidemiologia , HIV-1/genética
15.
Elife ; 132024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363119

RESUMO

The mitochondrial genomes of apicomplexans comprise merely three protein-coding genes, alongside a set of thirty to forty genes encoding small RNAs (sRNAs), many of which exhibit homologies to rRNA from E. coli. The expression status and integration of these short RNAs into ribosomes remains unclear and direct evidence for active ribosomes within apicomplexan mitochondria is still lacking. In this study, we conducted small RNA sequencing on the apicomplexan Toxoplasma gondii to investigate the occurrence and function of mitochondrial sRNAs. To enhance the analysis of sRNA sequencing outcomes, we also re-sequenced the T. gondii mitochondrial genome using an improved organelle enrichment protocol and Nanopore sequencing. It has been established previously that the T. gondii genome comprises 21 sequence blocks that undergo recombination among themselves but that their order is not entirely random. The enhanced coverage of the mitochondrial genome allowed us to characterize block combinations at increased resolution. Employing this refined genome for sRNA mapping, we find that many small RNAs originated from the junction sites between protein-coding blocks and rRNA sequence blocks. Surprisingly, such block border sRNAs were incorporated into polysomes together with canonical rRNA fragments and mRNAs. In conclusion, apicomplexan ribosomes are active within polysomes and are indeed assembled through the integration of sRNAs, including previously undetected sRNAs with merged mRNA-rRNA sequences. Our findings lead to the hypothesis that T. gondii's block-based genome organization enables the dual utilization of mitochondrial sequences as both messenger RNAs and ribosomal RNAs, potentially establishing a link between the regulation of rRNA and mRNA expression.


Assuntos
Genoma Mitocondrial , Pequeno RNA não Traduzido , Ribossomos Mitocondriais/metabolismo , Escherichia coli/genética , RNA Ribossômico/metabolismo , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Recombinação Genética
16.
Virus Res ; 339: 199257, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38347757

RESUMO

The genus Lagovirus, belonging to the family Caliciviridae, emerged around the 1980s. It includes highly pathogenic species, rabbit hemorrhagic disease virus (RHDV/GI.1) and European brown hare syndrome virus (EBHSV/GII.1), which cause fatal hepatitis, and nonpathogenic viruses with enteric tropism, rabbit calicivirus (RCV/GI.3,4) and hare calicivirus (HaCV/GII.2). Lagoviruses have evolved along two independent genetic lineages: GI (RHDV and RCV) in rabbits and GII (EBHSV and HaCV) in hares. To be emphasized is that genomes of lagoviruses, like other caliciviruses, are highly conserved at RdRp-VP60 junctions, favoring intergenotypic recombination events at this point. The recombination between an RCV (genotype GI.3), donor of non-structural (NS) genes, and an unknown virus, donor of structural (S) genes, likely led to the emergence of a new lagovirus in the European rabbit, called RHDV type 2 (GI.2), identified in Europe in 2010. New RHDV2 intergenotypic recombinants isolated in rabbits in Europe and Australia originated from similar events between RHDV2 (GI.2) and RHDV (GI.1) or RCV (GI.3,4). RHDV2 (GI.2) rapidly spread worldwide, replacing RHDV and showing several lagomorph species as secondary hosts. The recombination events in RHDV2 viruses have led to a number of viruses with very different combinations of NS and S genes. Recombinant RHDV2 with NS genes from hare lineage (GII) was recently identified in the European hare. This study investigated the first RHDV2 (GI.2) identified in Italy in European hare (RHDV2_Bg12), demonstrating that it was a new virus that originated from the recombination between RHDV2, as an S-gene donor and a hare lagovirus, not yet identified but presumably nonpathogenic, as an NS gene donor. When rabbits were inoculated with RHDV2_Bg12, neither deaths nor seroconversions were recorded, demonstrating that RHDV2_Bg12 cannot infect the rabbit. Furthermore, despite intensive and continuous field surveillance, RHDV2_Bg12 has never again been identified in either hares or rabbits in Italy or elsewhere. This result showed that the host specificity of lagoviruses can depend not only on S genes, as expected until today, but potentially also on some species-specific NS gene sequences. Therefore, because RHDV2 (GI.2) infects several lagomorphs, which in turn probably harbor several specific nonpathogenic lagoviruses, the possibility of new speciation, especially in those other than rabbits, is real. RHDV2 Bg_12 demonstrated this, although the attempt apparently failed.


Assuntos
Infecções por Caliciviridae , Lebres , Vírus da Doença Hemorrágica de Coelhos , Animais , Coelhos , Filogenia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/epidemiologia , Evolução Biológica , Vírus da Doença Hemorrágica de Coelhos/genética , Recombinação Genética
17.
Viruses ; 16(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38400085

RESUMO

Serpentoviruses are a subfamily of positive sense RNA viruses in the order Nidovirales, family Tobaniviridae, associated with respiratory disease in multiple clades of reptiles. While the broadest viral diversity is reported from captive pythons, other reptiles, including colubrid snakes, turtles, and lizards of captive and free-ranging origin are also known hosts. To better define serpentoviral diversity, eleven novel serpentovirus genomes were sequenced with an Illumina MiSeq and, when necessary, completed with other Sanger sequencing methods. The novel serpentoviral genomes, along with 57 other previously published serpentovirus genomes, were analyzed alongside four outgroup genomes. Genomic analyses included identifying unique genome templates for each serpentovirus clade, as well as analysis of coded protein composition, potential protein function, protein glycosylation sites, differences in phylogenetic history between open-reading frames, and recombination. Serpentoviral genomes contained diverse protein compositions. In addition to the fundamental structural spike, matrix, and nucleoprotein proteins required for virion formation, serpentovirus genomes also included 20 previously uncharacterized proteins. The uncharacterized proteins were homologous to a number of previously characterized proteins, including enzymes, transcription factors, scaffolding, viral resistance, and apoptosis-related proteins. Evidence for recombination was detected in multiple instances in genomes from both captive and free-ranging snakes. These results show serpentovirus as a diverse clade of viruses with genomes that code for a wide diversity of proteins potentially enhanced by recombination events.


Assuntos
Genoma , Nidovirales , Filogenia , Sequência de Bases , Nidovirales/genética , Recombinação Genética , Genoma Viral
18.
Am Nat ; 203(3): E78-E91, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358806

RESUMO

AbstractNumerous empirical studies have witnessed an increase in meiotic recombination rate in response to physiological stress imposed by unfavorable environmental conditions. Thus, inherited plasticity in recombination rate is hypothesized to be evolutionarily advantageous in changing environments. Previous theoretical models proceeded from the assumption that organisms increase their recombination rate when the environment becomes more stressful and demonstrated the evolutionary advantage of such a form of plasticity. Here, we numerically explore a complementary scenario-when the plastic increase in recombination rate is triggered by the environmental shifts. Specifically, we assume increased recombination in individuals developing in a different environment than their parents and, optionally, also in offspring of such individuals. We show that such shift-inducible recombination is always superior when the optimal constant recombination implies an intermediate rate. Moreover, under certain conditions, plastic recombination may also appear beneficial when the optimal constant recombination is either zero or free. The advantage of plastic recombination was better predicted by the range of the population's mean fitness over the period of environmental fluctuations, compared with the geometric mean fitness. These results hold for both panmixia and partial selfing, with faster dynamics of recombination modifier alleles under selfing. We think that recombination plasticity can be acquired under the control of environmentally responsive mechanisms, such as chromatin epigenetics remodeling.


Assuntos
Evolução Biológica , Recombinação Genética , Humanos , Estresse Fisiológico , Alelos
19.
Nat Commun ; 15(1): 1113, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326330

RESUMO

Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits. To address this shortcoming, we develop 63 symmetrical LoxP variants and test 1192 pairwise combinations to determine their cross-reactivity and specificity upon Cre activation. Ultimately, we establish a set of 16 orthogonal LoxPsym variants and demonstrate their use for multiplexed genome engineering in both prokaryotes (E. coli) and eukaryotes (S. cerevisiae and Z. mays). Together, this work yields a significant expansion of the Cre-LoxP toolbox for genome editing, metabolic engineering and other controlled recombination events, and provides insights into the Cre-LoxP recombination process.


Assuntos
Integrases , Recombinação Genética , Integrases/genética , Integrases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Recombinases/metabolismo , DNA/metabolismo
20.
Invest Ophthalmol Vis Sci ; 65(2): 12, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319669

RESUMO

Purpose: To sequence, identify, and perform phylogenetic and recombination analysis on three clinical adenovirus samples taken from the vitreous humor at the Bascom Palmer Eye Institute. Methods: The PacBio Sequel II was used to sequence the genomes of the three clinical adenovirus isolates. To identify the isolates, a full genome-based multiple sequence alignment (MSA) of 722 mastadenoviruses was generated using multiple alignment using fast Fourier transform (MAFFT). MAFFT was also used to generate genome-based human adenovirus B (HAdV-B) MSAs, as well as HAdV-B fiber, hexon, and penton protein-based MSAs. To examine recombination within HAdV-B, RF-Net 2 and Bootscan software programs were used. Results: In the course of classifying three new atypical ocular adenovirus samples, taken from the vitreous humor, we found that all three isolates were HAdV-B species. The three Bascom Palmer HAdV-B genomes were then combined with over 300 HAdV-B genome sequences, including nine ocular HAdV-B genome sequences. Attempts to categorize the penton, hexon, and fiber serotypes using phylogeny of the three Bascom Palmer samples were inconclusive due to incongruence between serotype and phylogeny in the dataset. Recombination analysis using a subset of HAdV-B strains to generate a hybridization network detected recombination between nonhuman primate and human-derived strains, recombination between one HAdV-B strain and the HAdV-E outgroup, and limited recombination between the B1 and B2 clades. Conclusions: The discordance between serotype and phylogeny detected in this study suggests that the current classification system does not accurately describe the natural history and phylogenetic relationships among adenoviruses.


Assuntos
Adenoviridae , Adenovírus Humanos , Humanos , Animais , Corpo Vítreo , Filogenia , Sorogrupo , Adenovírus Humanos/genética , Hexametônio , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...